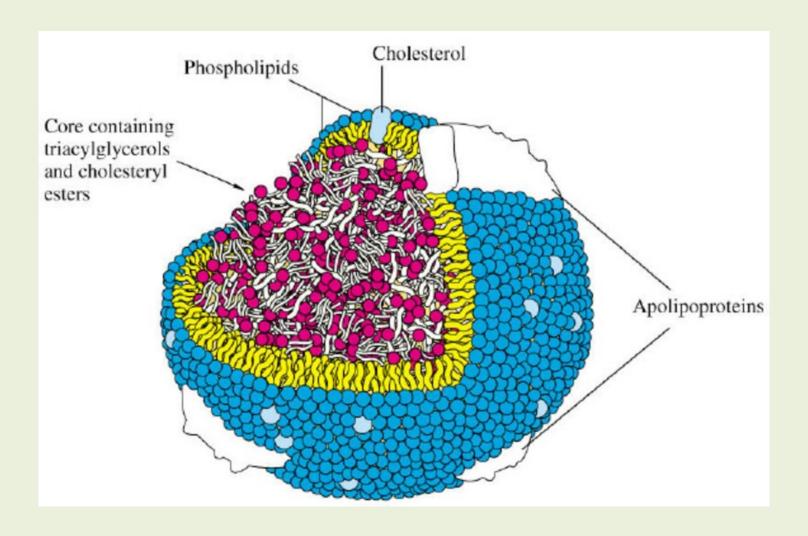
Disorders of Lipid Metabolism

Dr D.M.Vidanapathirana
MBBS, Dip Chem Path, MD Chemical Pathology,
FRCPath(UK)
Visting Senior Lecturer / Consultant Chemical Pathologist

Objectives

- Describe the basic structure and metabolism of lipoproteins in plasma
- Explain the pathological basis of common dyslipidemias, both primary and secondary
- Discuss the clinical significance of alterations in lipids and lipoproteins in plasma
- Request basic investigations and interpret results in common lipid disorders

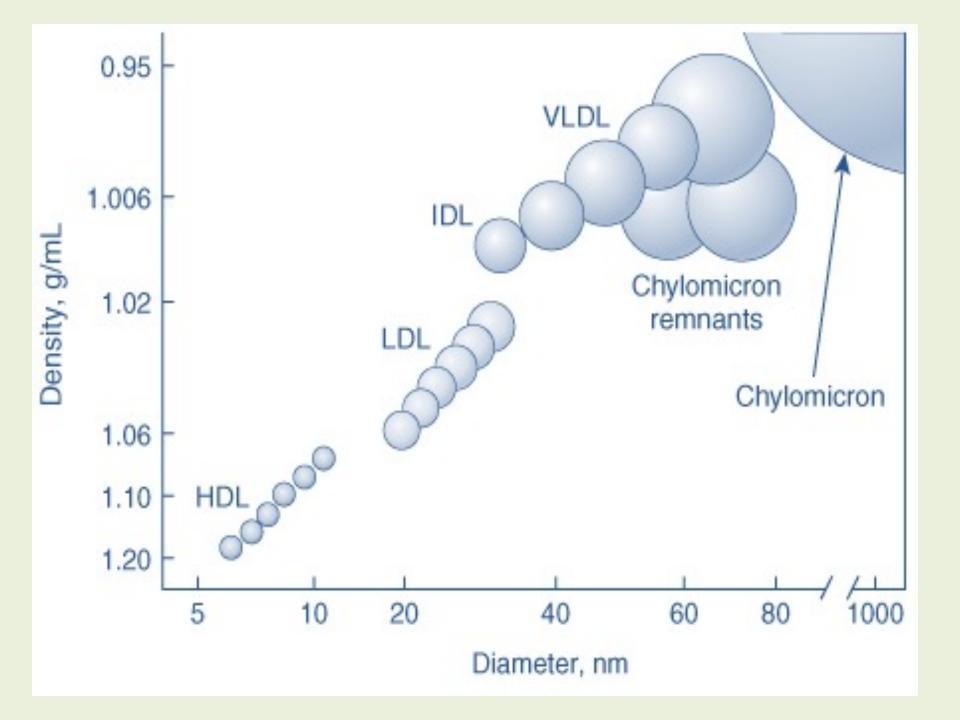
Lipids


- Triglyceride
- Cholesterol
- Phospholipids
- Fatty acids

- Lipids are not water soluble (hydrophobic)
- Lipid is carried in lipoproteins that transport the lipid to various tissues for energy utilization, lipid deposition, steroid hormone production, and bile acid formation.
- The lipoprotein consists of esterified and unesterified cholesterol, triglycerides, and phospholipids, and protein.
- The protein components of the lipoprotein are known as apolipoproteins (apo) or apoproteins.
- The different apolipoproteins serve as cofactors for enzymes and ligands for receptors.

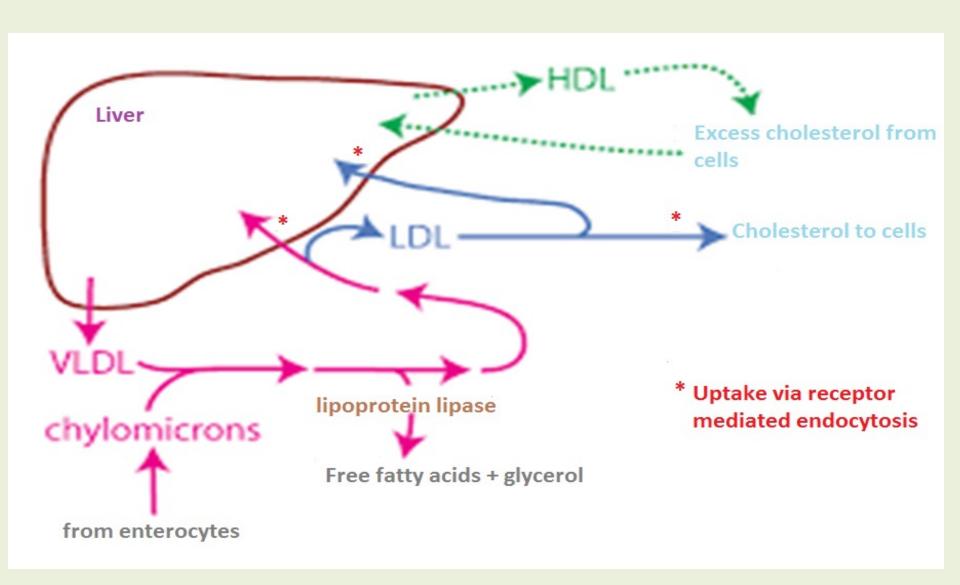
Lipoprotein structure

- Fat globule in water
- Central hydrophobic core (non-polar lipids)
 - Triglyceride
 - Esterified cholesterol
- Outer shell (polar lipids)
 - Apolipoproteins
 - Phospholipids
 - Unesterified/free cholesterol


Composition of lipoprotein particle

Types of lipoprotein

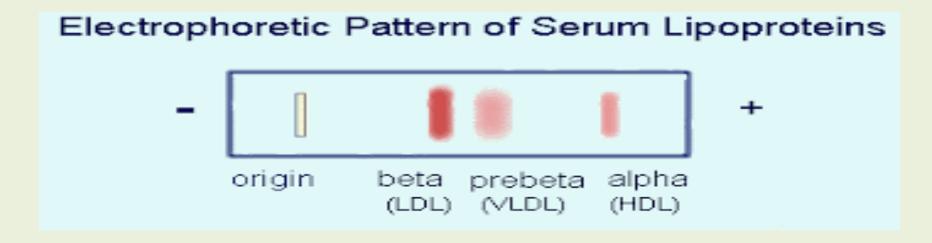
- High density (HDL)
- Low density (LDL)
- Intermediate density (IDL)
- Very low density (VLDL)
- Chylomicrons


- Lipoproteins vary in size, density and electrophoretic mobility.
- Physicochemical properties are determined by their relative content of triglyceride, cholesterol, phospholipid and protein.
- Chylomicrons are large and scatter light and impart a milky appearance to plasma.

Types of lipoprotein and their composition

Lipoprotein	Sour ce	Prot ein (%)	Choleste rol (%)	Triglyceri de (%)	Phosph olipid (%)	Apolipo proteins
Chylomicron	Intes tine	1	5	90	4	A,B- 48,C,E
VLDL	Liver	5	20	65	10	B- 100,C,E
IDL	VLDL	15	35	30	20	B-100,E
LDL	VLDL via IDL	20	50	10	20	B-100
HDL	Liver	55	15	5	25	A,C,E

Primary Functions of Lipoproteins


Broad basedly

- HDL GOOD cholesterol
- LDL BAD cholesterol

Methods of separation of lipoproteins

- 1. Ultracentrifugation
- 2. Electrophoresis

Electrophoretic mobility of lipoproteins

HDL - alpha
LDL - beta
VLDL - pre-beta
Chylomicrons - origin

Disorders of lipid metabolism

Primary hyperlipidaemias

- Hypercholesterolaemia
- Hypertriglyceridaemia
- Combined hyperlipidaemia

Secondary hyperlipidaemia

Hypercholesterolaemia	Hypertriglyceridaemia		
Hypothyroidism	Diabetes		
Obstructive jaundice	Alcoholism		
Acute porphyria	Lipodystrophies		
Growth hormone deficiency	Renal failure		
Drugs: corticosteroids, chlorthalidone	Oestrogen (pregnancy, oral contraceptives)		
	Glycogen storage disease		
	Thiazides		

Combined hyperlipidaemia

Nephrotic syndrome Myelomatosis

Laboratory Investigations

- Serum total cholesterol
- Serum lipid profile
- Apolipoprotein levels
- Lipid electrophoresis
- Special tests geno typing

 Screening, diagnosis, and treatment are based on the results of the measurement of serum lipids, which is generally accomplished by obtaining a lipid profile.

 On occasion, measurement of serum lipoproteins is necessary for one or more of these purposes.

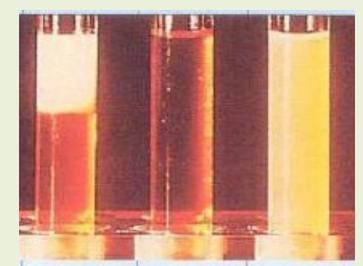
Total cholesterol

- Usually fasting
- Non fasting acceptable for screening
- < 200 mg/dL (5.2 mmol/L) is desirable.
- > 200 mg/dL (5.2 mmol/L) proceed to a lipid profile.

Lipid profile

- Fast for 9 12 hours (to remove chylomicrons).(Only water is allowed to drink)
- Collected to a plain tube without anticoagulant.
- Take a normal balanced diet for at least 3 weeks prior to test.
- Not on lipid lowering drugs unless being monitored.
- Refrain from alcohol 3 days before the test.
- No stress absence of acute illnesses including stroke, trauma, myocardial infarction (MI).
 - (Cholesterol level may be depressed after 24 hours to about 3 months after MI)

Observation of plasma appearance overnight


- Observe after keeping fasted plasma in a test tube at 4°C for 18 hours.
- Milky layer on top Chylomicrons

Turbid

- VLDL

Clear

- Normal/LDL

Lipid profile

Measure

Total Cholesterol

HDL Cholesterol

Triglycerides

LDL Cholesterol

VLDL Cholesterol

Cardiac risk ratio

Calculate

Friedewald formula

- Total cholesterol = HDL + LDL + VLDL
- LDL = Total cholesterol (HDL + VLDL)
- VLDL = <u>Triglyceride</u> (mg/dL)

5

= Triglyceride (mmol/L)

2.2

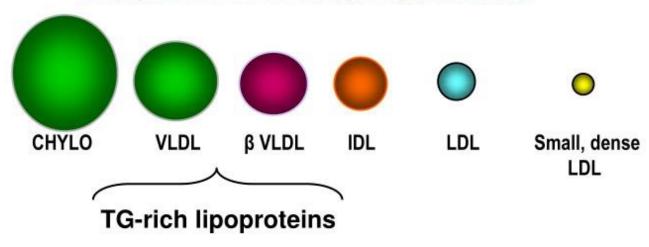
- Formula is not valid if triglycerides are > 400 mg/dL (4.5 mmol/L)
- In such instances LDL is measured using direct LDL assay.

Limitations of friedewald formula

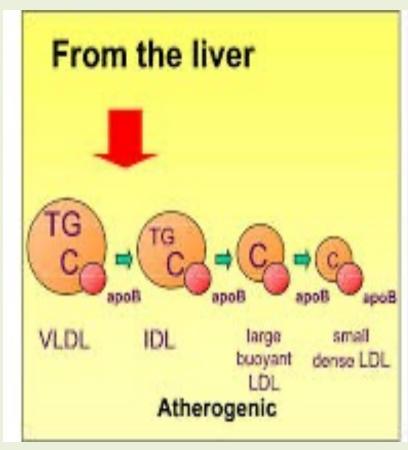
Non fasting samples

Type 111 dysbetalipoproteinemia

Cardiac risk ratio


Total cholesterol / HDL Cholesterol

> 5 unfavourable


Apo B/Apo lipoprotein A1 ratio

Atherogenic Particles

In people with the triade profile we should consider the quality of lipoproteins rather than the quantity of blood lipids

Consider « Non HDL Cholesterol » (equivalent to LDL + 30 mg/dl)

Cardiovascular Risk Tracks With Particles, Not Cholesterol More Particles Higher Risk 100 mg/dl 100 mg/dl Small Large LDL LDL **Particles Particles** LDL Cholesterol Balance

Classification

LDL cholesterol (mg/dL)	< 100	Optimum			
	100 - 129	Near or above optimum			
	130 - 159	Borderline high			
	160 - 189	High			
	≥ 190	Very high			
Total cholesterol (mg/dL)	< 200	Desirable			
	200 - 239	Borderline high			
	≥ 240	High			
HDL cholesterol (mg/dL)	< 40	Low			
	≥ 60	High			

NCEP-ATP 111 – National Cholesterol Education Program Adult Treatment Panel 111

Classification of serum triglyceride (mg/dL)

< 150	Normal		
150 – 199	Borderline high		
200 – 499	High		
> 500	Very high		

Apoprotein levels

- Apoprotein A 1 reflects HDL
- Apoprotein B reflects LDL
- Apolipoprotein a independent risk factor for myocardial infarction

Lipid electrophoresis

- Serum electrophoresis is done
- Stain with a lipid staining dye
- Fredrickson's classification of primary hyperlipidaemia's is based on this

Fredrickson's classification

Phenotype	Lipids	Electrophoresis picture	Lipoproteins	Diagnosis
1	个TG	Origin	Chylomicrons	Familial Hyperchylomicronemia
11 a	个TC	b-lipoprotein	LDL	Familial Hypercholesterolemia
11 b	个TC, 个TG	Pre b and b	VLDL + LDL	Familial Combined Hyperlipoproteinemia
111	个TC, 个TG	Broad b	IDL	Dysbetalipoproteinemia
1V	个TG	Pre-b	VLDL	Primary Hypertriglyceridemia
V	个TC, 个TG	Origin & pre b	Chylo + VLDL	Mixed Hypertriglyceridemia

Special tests

Apo E genotyping using PCR technique
 (Apo E shows polymorphism in familial dysbetalipoproteinaemia)

Conversion factor

- Cholesterol mg/dL/38.6 = mmol/L
- Triglyceride mg/dL/88.5 = mmol/L

Summary

- Screening test
- Total cholesterol
- Confirming test
- Lipid profile

Phenotyping

- Lipid electrophoresis

Geno typing

- PCR technology
- Monitoring tests Lipid profile

References

- Marshall WJ, Bangert SK and Lapsley M. Lipids, lipoproteins and cardiovascular disease. In: Clinical Chemistry.7th ed.2012.p.239-258.
- Remaley AT, Rifai N & Warnick GR. Lipids, lipoproteins, apolipoproteins and other cardiovascular risk factors. In: Burtis C, Ashwood E & Bruns D. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics.5th ed. Publishing; 2012.p.731-805.

Thank you!